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Two major conclusions

1/ The Hall term is necessary for fast reconnection
2/ The reconnection rate does not depend on the dissipation mechanism
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Monofluid, frozen

E=—-vxB

E=-v;xB+XB

E=-V- P,

Electron acceleration/heating
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Monofluid, frozen

E=—-vxB

E=-v;xB+XB

E=-V- P,

“Two-Species” box

N

Strong current on the separatrix region
(first reconnected field line)
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Monofluid, frozen
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Monofluid, frozen

E=-vxB
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E=—-vxB

E=-v;xB+XB

E=-V- P,

Monofluid, frozen

N

N

Electrons drag the field line : out-of-plane rotation
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E=—-vxB

Monofluid, frozen

Electrons drag the field line : out-of-plane rotation
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Monofluid, frozen

E=—-vxB

Quadrupolar pattern of the out-of-plane B
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Monofluid, frozen

E=—-vxB

Hall electric field




E=—-vxB

Monofluid, frozen

lon heating : maintain pressure balance and open outflow
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lon heating : maintain pressure balance and open outflow
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What physics in the simulations?

Ohm’s law Model Scales
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What physics in the simulations?

Ohm’s law
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Model

Fully kinetic

Keep everything in the
Vlasov-Maxwell system

Hybrid kinetic
Neglect electron kinetic
effects but keep bulk inertia?

Scales
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What physics in the simulations?
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What physics in the simulations?

Ohm’s law Model Scales
. v . D | | Fully kinetic 0i P4
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ng ng e Vlasov-Maxwell system
B VP 'm Hybrid kinetic 5. D
E = —Vji X B | J — = = | F edtVe Neglect electron kinetic ) P
ng ng j € | effects but keep bulk inertia? —
: o Massless Resistive
xB VP . 0i Pi
E=-—vixB4i— ¢ 7] Hybrid kinetic -
ng ng Electron fluid Frozen in B Bl
. n, ixB VP ' Numerical Massless Hybrid kinetic  d; pi
— —ViX ! ng - ng ) dissipation Electron fluid Frozen in B
e —~h MHD

Plasma is frozen in B
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What physics in the simulations?
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What physics in the simulations?
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What physics in the simulations?
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As long as this is
resolved and dominant

any of these is
ok and does not
change the rate
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Electrons non ideal scales

They can change field line connectivity

: | Without it

—? With a
| non-ideal
region
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Electrons non ideal scales

They can change field line connectivity

Without it

With a
non-ideal
region

Newly
connected
point

What they are in fully kinetic systems
[Hesse 2011]

Collisionless mixing of particle
with different dynamical origin

These particles are from below
(more E, acceleration)

Non—gyrotroplc and moving up
distributions

These particles are from above
(less E, acceleration)
and moving down

“unmagnetized”
trajectories
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Electrons non ideal scales

They can change field line connectivity

Without it

With a
non-ideal
region

Newly
connected
point

What they are in fully kinetic systems
[Hesse 2011]

Collisionless mixing of particle
with different dynamical origin

13,0 X 13.4

These particles are from below
(more E, acceleration)
and moving up

Non-gyrotropic
distributions

— DS b

—

These particles are from above
(less E, acceleration)
and moving down

“unmagnetized”

trajectories

Fundamentally important to understand reconnection

hut does not affect its global rate
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Hybrid simulations (without physical dissipation) are fast
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Hybrid simulations (without physical dissipation) are fast
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Hybrid simulations (without physical dissipation) are fast
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Reconnection appears fast and steady
Although no physical dissipation length scale is resolved

“Numerical dissipation” seems sufficient
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Hybrid simulations (without physical dissipation) are fast
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Hybrid simulations (without physical dissipation) are fast
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Hybrid simulations (without physical dissipation) are fast
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Asymmetric reconnection is more general
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Asymmetric setup

Periodic in x

, y
B.o =1

Az = 0.15
Ay = 0.15
T = cst =3/2

j xB VP, .

E=—-v;x B+ L — A

ng ng
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Asymmetric setup

Periodic in x

, y
B.o=1

Ax = 0.15
Ay = 0.15
T = cst =3/2

] xB VP, .

E=—-v;x B+ L — s

ng ng

Isotherm closure for
the electron fluid
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Asymmetric setup

Periodic in x

, y
B,y =
Az = 0.15
Ay = 0.15
T = cst =3/2
________ + numerical stability
X B VPe o <7
E:_viXBIJ — meent I:I,'/]JE ES_MO52VA_103:
ng ng ‘oo e n o
dr/2 = 2J,
TR : Reconnection of field I

Isotherm closure for :

- the electron fluid : . lines 'S dom_a m
e LR . numerical dissipation
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Result :
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What did we see ?
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What did we see ?
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Elongation/breaking oscillations

Z Current Density (Jz) t = 61.00
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The reconnection rate is modulated by the formation of islands
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Why is it elongating?

Two possibilities :

57; (~1) is not sufficiently resolved (dy = 0.159; )
Numerical diffusion leads to a “numerical Sweet-Parker-like regime”
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Why is it elongating?

Two possibilities :

57; (~1) is not sufficiently resolved (dy = 0.159; )
Numerical diffusion leads to a “numerical Sweet-Parker-like regime”

OR

The Hall effect is sufficiently resolved but the dissipation is too weak.
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Why is it elongating?

Two possibilities :

57; (~1) is not sufficiently resolved (dy = 0.159; )
Numerical diffusion leads to a “numerical Sweet-Parker-like regime”

OR

The Hall effect is sufficiently resolved but the dissipation is too weak.

Somehow contrad?icts the paradigm that says that dissipation does not
matter, unless it dominates over the Hall effect
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If the dissipation is too weak, the field lines can’t reconnect before the hot downstream plasma
has moved away
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If the dissipation is too weak, the field lines can’t reconnect before the hot downstream plasma
has moved away
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If the dissipation is too weak, the field lines can’t reconnect before the hot downstream plasma
has moved away
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New simulation : increase the resistivity

ixB VP, _ M0V _ 1
ng ng
dy — 015&
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Result :

7 Current Density (Jz) t = 40.00 . 7 Magnetic Field (Bz) t = 40.00

2.00

0.80

No more elongation of the electron current sheet
The process is steady and the exhaust open

The out-of-plane B indicates that Hall physics is occuring
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New simulation : Change the dissipation mechanism

jxB VP,

E — —Vj X B —|— _Vv2j

v =2.5-10% 2_2:_

Jz(y) t=30

”‘1 ng dy =0.150; .l
dy = 0.0766, |
o L 20Uy T
b=~ 5enPL 5y V* (mnwv,)
[Hesse 2011]
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Result :

7 Current Density (Jz) t = 40.00 . 7 Magnetic Field (Bz) t = 40.00

0.00

Still no elongation of the current sheet
More flux seems to have heen reconnected

Stronger out-of-plane B
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Comparison with full PIC

7 Magnetic Field (Bz)

t =
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7 Magnetic Field (Bz)
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Comparison with full PIC

7 Magnetic Field (Bz)
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Reconnection rate for the resistive and hyperresistive runs

0.06: """"" [TTTTFTTTT [frrrrrrrd [TrrT

0.05F :
0.04 -
Rate :
0.03F
0.02} * :
0.01F =
- eta=1e—-3, nu=2.5e—4
- eta=7e—-3, nu=0 ]
0.00f- = --=-—mm e o]
......... T PR T R N
0 10 20 301 40 50
t/ch

How does the rate change with 7/ and M ?
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How asymmetric systems are initialized ?
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Initial condition model

Fluid pressure halance

Maxwellian distribution 4 >
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Initial condition model

Not a steady state

Overall pressure halance is preserved (the current sheet stays in the center of the domain)
lon kinetic perturbation due to their gyration around B lines : affects neighboring distributions
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Initial condition model

Charge Density {(dn) map t = 0.0000000

Tenuous

Not a steady state

Overall pressure halance is preserved (the current sheet stays in the center of the domain)
lon kinetic perturbation due to their gyration around B lines : affects neighboring distributions
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Unsteady initial condition
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Unsteady initial condition

total pressure, t = 0.00000
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Kinetic equilibrium for asymmetric configurations

Choose B profile, asymptotic n1, n2, T1, T2

For simplicity here : assume E=0, Te=0 (all the current carried by ions)

Shared central

One different distribution

population on each side !
1.71
1.4 Distribution a gauche 147
1 2 1.24 - .
10 1.00 — —
0.77F -
E 0.8 0.53
0.6 0.30
04 0.06
-0.18
0.2 —0.41 .
0.0 -0.65
1.71
1.4 Distribution a droite 1 a7l
1 2 1.24 -— =
1.0 ol
0.77F -
E 0.8 0.53
0.6 0.30
04 0.06
-0.18
0.2 -0.41
0.0 -0.65
_9 0 2 4 6 8 10 12 Log(f)
Pz
Local symmetry
inevitable

Maxwellian
boundaries

[Belmont et al PoP 2012, Aunai et al. 2012 almost submitted]

B (y) = tanh(y)
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A solution :

8 - ' ' . ' ' ' ' ‘ EJensite c;e pi;rtiCL‘JIBS-
i Mixing layer |
6 " T
- Densité totale i
- “1' \ a
4
- Densité popA / h
L / _
_ \,WOpB :
0 "
-10 -5 0 o)
y

Moments are not simply monotonic
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A solution:
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Initialization with the moments of the kinetic solution

But still with local Maxwellian distributions with n, V, full P




Initialization with the moments of the kinetic solution

But still with local Maxwellian distributions with n, V, full P

total pressure, t = 0.00000
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Initialization with the full distribution




Initialization with the full distribution

total pressure, t =

0.00000
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Summary

Hybrid simulations of symmetric reconnection are fast

The dissipation term seems to play a more important role in asymmetric systems

Very few theories of asymmetric kinetic equilibria: never used as an initial
condition for kinetic simulations

Most (all?) previous theories give uncontrollable B profiles

New theoretical method to build ion scale steady states in asymmetric configuration

Theory validated by kinetic simulation : simulations of current sheets in asymmetric
config. can be initialized with a true steady state

Next

® How does the rate depend on the resistivity ?

® On the electron viscosity ?

® How do hybrid models compare to full PIC ?

® \What is the fluid expression of the electron kinetic dissipation in asymmetric

systems ?

Generalize the kinetic equilibrium theory to B rotation, normal E, finite Te.

Test its behavior within a fully kinetic system
Does phenomena like M. reconnection depend on the initial state?
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