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‘Dipolarization Front’ is derivative from ‘Dipole’

ZA Earth magnetotail
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DFs are different from plasmoids
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velocities

DFs are reproduced in hybrid and MHD
simulations of reconnection

(Fujimoto et al., 1996; Hesse et al., 1998; Wiltberger et al., 2000; Nakamura et al., 2002;
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Plate 4. Frames from the visualizations showing | E| in an XY (z = —4) cut planes with velocity

vectors (white arrows) overlaid.

Challenges: (1) For hybrid simulations, local resistivity is
needed to trigger reconnection
(2) MHD apparently can not address kinetic nature of DF



DFs are also reproduced in 2D Particle -In-Cell codes

with open boundary conditions or in very large simulation box (Daughton et al. 2006;
Sitnov et al. 2009; Klimas et al., 2010; Wu and Shay, 2012)

Sitnov et al., 2009: GEM challenge
Open boundaries

SITNOV ET AL.: DIPOLARIZATION FRONT

Challenges:

(1) DF should propagate freely through
boundary: Open boundaries are needed.

(2) Most of DF simulations start from GEM
challenge:

1D Harris + external disturbance

GEM reconnection always has transient phase

Figure 2. Magnetic field lines and the color-coded current density component —J,, for Run 1 at the
moment ;7= 12.

(3) DFs are by nature transient processes. %
It's hard to convince that DF in GEM reconnection  °*
is not an artificial transient process. 0.2

o AEE
(5) Next step: Reconnection in 2.5 D equilibria s

with open boundaries




PIC simulation of reconnection and DFs in 2D
equilibrium: P3D code with

0.05 = ' ‘With open boundaries,
you may consider only a part

of the box for a “real” magnetotail
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Machida et al., 2009:
statistical picture of substorm from Geotail X

axis is along magnetotail Magnetlc ﬁeld hump
Y axis is inversed plasma beta ;
from observations

and global MHD
simulations

[1min |

—U6

Merkin&Goodrich, 2007:
Global MHD LFM

Bz=-5nT X, Re III\ | |‘| I1[]1 200 |

5995855822 ex el w

|

|

|

!
e



B-field lines and reconnection electric field (color) in
equilibria with monotonic Bz:
Reconnection triggers DF motion

Qut—of—plane electric field E (w _t= 0.1)
y * 0 0.30

—0.30




B-field lines and reconnection electric field (color)
in magnetotail with initial Bz-hump

Out—of—plane electric field = (w t= 0. 1) -

“/ X B




Run with ‘Bz-hump’ equilibria:
reconnection onset and formation of DFs
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Reconnection in SS2010 run:

Formation of an inactive X-points

Electric field £ (w, t= 40.2)
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Activation ot X-points and formation of
electron diffusion regions (EDRs) with new DFs

Electric field 3 (w t= 52.3)
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Virtual s/ c observations of DFs for two cases of

equilibrium
Monotonic Bz- proflle Bz W1th hump - multlple DFS
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(1) Sign of Vx is inverted to match GSM,;
(2) Y scale is linear for all variables but Ymax is different for different variables
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Multiple fronts are observed

by THEMIS (Runov et al., 2009) and by Cluster (Chen et al., 2011)
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3D PICture
New player: Interchange mode

(Pritchett and Coroniti, 201 |)
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CONCLUSIONS

There are lot of observations for dipolarization fronts (DFs):

a good opportunity to learn about collisionless reconnection in
the Earth magnetotail

We found reconnection and DF formation are sensitive to
initial equilibrium

Open boundary conditions seem critical

2D and 3D PIC simulations reveal that in the Earth

magnetotail, reconnection may be a consequence of plasma
motion due to instabilities

Hence, it is DF that generate X-point in these regimes

CLUSTER and THEMIS observations confirm this PICture at
least for some cases

We hope to apply these results for future NASA MMS mission






Run with extended box (50di vs 40di in X direction)
[nitial equilibrium with Bz humps
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Figure 1. Two basic types of current sheet equilibria used in simulations. Run 1: (a) normal magnetic
field B, at the neutral plane z = 0, (b) dimensionless plasma pressure parameter p = 1/(23%), (c) current
sheet half thickness L./L = 3(x), (d) magnetic field lines for the equilibrium with the magnetotails similar
to the Lembege and Pellat [1982] model, and (e) the driving electric field E}d”) at top and bottom
boundaries z = +10. Run 5 differs from run 1 by the reduced value of the driving field E{” = 0.05.
Run 2: (f—) parameters similar to those of run 1 for the multiscale equilibrium investigated by Sitnov
and Schindler [2010] with the same driving field E§” = 0.2 as in run 1. The strength of the driving field
is reduced to E5*” = 0.05 in runs 3 and 4. The latter run differs from runs 2 and 3 by the increased size of
the simulation box along the X direction: —25 < x < 25.
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Boundary conditions: Particles

Open boundaries are needed [Daughton et al., 2006]

e to allow the elongation and disruption of the electron diffusion region

e to avoid cutting the flux tube integral, which plays the key role in the tearing
stability

T =Tt =0), a=e,i

Contradicts force balance across

Additional particle injection:
the boundary for 2D equilibria [;
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Outflow (X) Boundary conditions: Fields
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Provide free propagation of
magnetic flux [Pritchett, 2001]
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